Evaluation of Statistical Estimation Methods for Lognormally Distributed Variables
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ABSTRACT

Distributions of many chemical, physical, and microbiological
properties of soils appear to be lognormal. Several conflicting rec-
ommendations exist in the soil science and statistical literature on
how to best estimate the population mean, variance, and coefficient
of variation of lognormally distributed data. We chose to determine
with statistical certainty which of the following three methods is
best: (i) the method of moments (method 1); (ii) maximum likelihood
(method 2); and (iii) Finney’s method (method 3). We assessed the
efficacy of these three methods for estimating the mean, variance,
and coefficient of variation of lognormal data in the range of sample
sizes from n = 4 to 100. Three test lognormal populations were used
in our evaluation with coefficients of variation that span the range
seen for many soil variables (CVs of 50%, 100%, and 200%). We
found Finney’s method was best for estimating the mean and vari-
ance of lognormal data when the coefficient of variation of the un-
derlying lognormal frequency distribution exceeds 100%, below this
value the extra computational effort required to implement Finney’s
technique buys little, relative to the method of moments. Finney’s
method has not been previously applied by soil scientists, but its
superiority over maximum likelihood suggests that the latter should
not be generally recommended for estimating the mean, variance and
coefficient of variation of lognormal data.

Additional Index Words: Lognormal, Mean square error, Bias,
Efficiency, Soil variables, Monte Carlo simulation.

THE VARIABILITY of soil properties has received in-
creased interest (Nielsen & Bouma, 1985). The
combination of low cost computers and automated
analysis systems has enabled scientists to generate large
databases for particular soil variables. These large da-
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tabases have, in turn, allowed the characterization of
the variability and frequency distributions of soil var-
iables. Such analyses indicate that the frequency dis-
tributions of many physical, chemical, and micro-
biological soil properties are skewed to the right and
are better approximated by the lognormal frequency
distribution than by the normal (Gaussian) probabil-
ity density function (Table 1).

Confusion exists on how to best estimate the mean,
variance, and coefficient of variation of lognormally
distributed data. This stems from the fact that several
statistical procedures for estimating these population
parameters have appeared in soil science and statis-
tical literature. (Warrick & Nielsen, 1980; Koch &
Link, 1970). A statistically complete evaluation of the
most commonly applied methods has not been pub-
lished in a source accessible to the majority of soil
scientists. We undertook the present study to deter-
mine the statistical efficacy of three methods (method
of moments, maximum likelihood, and Finney’s ap-
proximation) for estimating the population mean, var-
iance, and coeflicient of variation of lognormal data.
Of these three, method 2 (maximum likelihood) has
been recommended for use by some soil scientists
(Warrick & Nielsen, 1980; Folurenso & Rolston, 1984;
Parkin et al. 1985), although, as we will show, it is
generally inferior to Finney’s method (method 3) as
well as the more commonly applied method of mo-
ments (method 1). Finney’s method for estimating the
mean, variance, and coeflicient of variation of log-
normal data has only rarely been applied to soils data.
(White et al., 1987; Parkin, 1987; Parkin et al. 1987).

The present study is a theoretical one in the sense
that we investigated the properties of the three esti-
mation methods in a “world” where the answers were
known. Description of any new statistical estimation
method often incorporates an evaluation of the method
for a family of known probability density functions
that cover the range of distributions seen or expected
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Table 1. Abbreviated survey of seil variables which have been
reported to be approximately lognormally distributed.

Meth-
Soil variable n % CV  odft Reference
. Structure
Aggregate size 36 119-182% 2  Allmaras et al., 1965
Water
Water flux 81-100 31-499 1 Jones & Wagenet, 1984
Hydraul. conduct. 20  102-132 1 Warrick et al,, 1977
Hydraul. conduct 20 157-321 Warrick et al., 1977
I N
Nitrate 20 21-87 1 Cameron & Wild, 1984
12-30 27-83 2  Ruess, et al, 1977
49 29 2 Tabor, et al,, 1985
149 51-66 2  White et al,, 1987
d N 46 11.1 1  Sells et al., 1986
Total N 46 22.8 1  Sells et al,, 1986
Gases

CO,, pore space  137-195 71-106% 2 Focht et al, 1979
N,O, pore space 135-205 135-277f 2 Focht et al,, 1979

N,O, surface flux 36 282-379 2 Folorunso & Rolston, 1984
Denitrification ’
Surface chambers 36 161-508 2 Folorunso & Rolston, 1984
3 1-115 1 Duxbury &
' McConnaughey, 1986
Intact soil cores 4 44-120 1 Burton & Beauchamp, 1984
4-50 95-250 2  Parkin et al.,, 1985
36  128-383 3 Parkin et al., 1987
Enzyme activity 36 18.7-58.4 3  Parkin et al., 1987
Bacterial numbers
Plant leaves 24 15.3-236% 2 Hirano et al., 1982
Rhizosphere 40-60 26.7-157f 2 Loper et al., 1984

1 Method refers to the statistical method used for calculating estimates
of the mean, variance, and coefficient of variation.

t Coefficients of variation were not reported but were calculated from the
variance of the log transformed values using method 2 (Eq. (6] of this

paper

for real data. We followed the same approach in the
study described in this paper. We evaluated the ability
of three methods to estimate the population mean,
variance, and coefficient of variation of lognormal data
given three lognormal populations where the mean
and variances were known. This was done for sample
sizes of n = 4 to 100, making our results relevant to
most typical studies in soil sciences. The lognormal
distributions we used to evaluate the three estimation
methods are representative of lognormal distributions
that describe the frequency distributions of several soil
propertres (Table 1).

THEORY

Three different methods of estimation were evaluated with
respect to how well the population mean, variance, and coef-
ficient of variation were estimated from sample data. These
methods are: (i) the method of moments, (ii) the method of
maximum likelihood, and (iii) the umformly minimum var-
iance unbiased estimator (UMVUE) method of Finney
(1941). The implementation of these methods in estimating
the population mean (), variance (6%, and coefﬁcrent of
variation (CV) is presented below.

Method 1

This is the method of moments which is typically applied
when a normal frequency distribution is obsérved or when
the sample size is too small to adequately determine the true
population frequency distribution but a normal distribution

is assumed. The variance estimate which appears in Eq. [2]
is not strictly a method of moments as the term » — 1 rather
than » appears in the denominator. The term n — 1 was
used here because of the known bias which exists for low
sample numbers when 7z is used (Snedecor and Cochran,
1967). This method was included because it is the most com-
monly used method in soil science and therefore provides
a well known benchmark. The mean, variance, and CV are
calculated using untransformed data as described by Eq. [1,
2, and 3], respectively.

- Z (1]
" n =
1 n
st = (% — md) [2]
n — l i=1
o = §/m,y (3]
where
x; = the untransformed ith observation,
n = the number of observations,
m, = the estimate of the population mean (@),
s? = the estimate of the population variance, (%), and
cv, = the estimate of the coefficient of variation, CV.

Subscripts refer to method 1.

Method 2

The maximum likelihood method has been recommended
when the observations are thought to be lognormally dis-
tributed (Warrick & Nielsen, 1980). Estimates ‘of a, 8%, and
CV are given by (Aitchinson & Brown, 1957) and are pre-
sented in Eq. [4], [5], and [7], respectively:

m, = exp(g + ¢?/2) (4]
53 = mj [exp(c®) — 1] (5]
cvy = s/m, = [exp(e?) — 1]'? [6]

where
= % Z n(x)) [7]

and
7 = —— 3 (n(x) ~ B). 8]
Method 3

These uniformly minimum variance unbiased estimators
(UMVUE) were developed independently by Finney (1941)
and Sichel (1952) and have been typically applied to the
analysis of geological data (Krige, 1981; Koch & Link, 1970).
Estimators of «, 82, 'and CV are given by Eq. [9], [10] and
[11], respectively:.

- my = exp(p) ¥ (¢/2) (9

= exp(2) {q/ Qo) — ¥ [E” — fi ” [10]
cVy = S3/m3 [11]
where ¥ = the power series given in Eq. [12].
_ tn—1 rnr-—1)»
Yo=1+-— 7 + 1)2)
B(n— 1)y

nn+ 1) (n + 3)3!
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Fig. 1. Probability density functions of the three lognormal popu-
lations evaluated in this study. The mean of each population (in
untransformed units) is 10 and variances of the populations are
25 (pop. A), 100 (pop. B), and 400 (pop. C), respectively.
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In this study Eq. [12] was evaluated until the final term
accounted for <<1% of the sum of the preceeding terms. This
usually required the calculation of 6 to 10 terms.

+ ... 12

EVALUATION OF THE METHODS

Three different lognormal populations with known pa-
rameters were used in these evaluations. Figure | shows the
probability density functions of the three populations. Pop-
ulation A has a CV of 50% and is only slightly skewed.
Population Cis highly skewed (CV = 200%) and population
B is intermediate with respect to skewness (CV = 100%).
These populations represent a range of skewness often ob-
served for soil variables (Table 1). Each population had a
mean of 10 and variances of 25, 100, and 400, respectively.
Other characteristics of the test populatlons are presented
in Table 2.

For each population parameter estimated, the three est1-
mators were compared with respect to their relative effi-
ciency by comparing their mean square errors (Barnett, 1973).
The mean square error (MSE) is the average squared devia-
tion of an estimate from the parameter it is estimating. It is
a combination of both the estimator’s variance (average
squared deviation about the estimator’s expected value) and
bias (the systematic under- or over-estimation of the param-
eter being estimated, Eq. [13])

MSE = variance + bias?. {13]

The use of MSE allows one to compare both biased and
unbiased estimators. When an estimator is unbiased, the
MSE is equal to the variance or variability of the estimator.
Thus, the estimator with the smallest MSE is the one that
has the smallest (squared) deviation from the parameter being
estimated regardless of whether it is biased or not. The for-
mulas for the variance and bias of each of the estimators of
the lognormal mean and variance are presented in the ap-
pendix.

Monte Carlo Simulations

Exact solutions for the MSE of the UMVUE variance es-
timator and for the CV estimators do not exist, thus, these
parameters were evaluated empirically using Monte Carlo
simulation techniques. The influence of sample size (n) on
these estimators was determined by selecting from 4 to 100
(incremented by 2) observations from each population and
calculating the UMVUE variance estimator and CVs using

Table 2. Statistical properties of 3 populations used in the Monte
Carlo simulations.

Vari. Mean of SD of
Median Mode ness ance (3% logs (u) logs (o)

Popula- Mean Skew-
tion (e}

A 10.0 8944 17.155 1.625 25.0 2191 0.4724
B 10.0 7.071 3.336 4000 100.0 1.956 0.8328
C 10.0 4472 0.894 14.000 400.0 1.498 1.2690
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Fig. 2. Influence of sample size on mean square error of the three
statistical methods used to estimate the mean of populations A
(Fig. 2A), B (Fig. 2B), and C (Fig. 2C). Presented are the exact
solutions of the mean square errors.

all three methods. Ten thousand Monte Carlo simulations
were run for each sample size, using an algorithm for gen-
erdting random variates from a lognormal distribution. The
bias, variance, and mean square error of each estimator was
calculated from Eq. [14], [15], and [16], respectively.

10000

BIAS(P) = m k; (P, — P) [14]
VAR(P) = 10_1)66 k; (P, — Py [15]

MSE(P) = VAR(P) + BIAS(P)? [16]
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where
10 000 = the number of Monte Carlo simulations,
P = the true population parameter value,
P, = the estimate of the population parameter ob-
_  tained from the kth simulation, and
P = the average parameter estimate of the 10 000
simulations.

RESULTS AND DISCUSSION
Estimating the Mean

For populations A and B (Fig. 2A, B) all three meth-
ods were nearly the same with respect to the behavior
of their mean square errors (MSEs) in estimating the
mean. The MSEs of methods 1 and 3 were indistin-
guishable over all sample sizes while the MSE of
method 2 was slightly higher than the other methods
for small sample sizes (n < 20). At higher sample
numbers (n > 40) the MSEs of all three methods were
essentially equal.

With population C (Fig. 2C) a difference in the MSE
curves could be discerned. Over all sample sizes
method 3 had a lower MSE than the other methods.
For sample sizes of n < 20 method 2 exhibited larger
MSE:s than either methods 1 or 3, however, for n >
20 method 2 had lower MSEs than method 1, and the
MSE of method 2 approached levels exhibited by
method 3.

Estimators of the mean given by methods 1 and 3
are unbiased, however, the method 2 estimator yields
biased values of the mean (Table 3). The bias de-
creases with increasing sample size, however, with in-
creasing population skewness bias increases for a given
sample size. Thus, for sample sizes of n = 4, method
2 overestimates the mean by 3.28%, 14.46%, and
73.29%, for populations A, B, and C, respectively.

There have been few studies which evaluate various
statistical methods as applied to skewed data. Evalu-
ation of procedures for estimating mean and standard
deviation of a three-parameter lognormal distribution
was conducted by Cohen and Whitten (1980), how-
ever, the influence of sample size was not considered.
Warrick and Nielsen (1980) compared estimators of
the mean using methods 1 and 2 (Eq. [1] and [4],
respectively) using a single data set containing 20 ob-
servations and concluded that method (i) yields
underestimates of the population mean. These inves-
tigators were only working with a single small data set
and « was unknown. Results presented here indicate
that method 1 is unbiased and does not underestimate
the mean. Rather method 2 is biased and yields over-
estimates. The results of this study support the theo-
retical work of Finney (1941) and Sichel (1952) which
predicted that application of Eq. [4] to samples with

Table 3. Influence of sample size and population skewness on bias
of the method 2 mean estimator.

% bias of the mean population

Sample size (n) A B c
4 3.28 14.46 73.29
12 1.05 4.11 14.15
20 0.63 2.41 7.94
40 0.31 1.19 3.79
60 0.21 0.79 2.49
100 0.12 0.47 1.48

n < 100 would yield over-estimates of a and that
method 3 (Eq. [8]) is the minimum variance unbiased
estimator.

Estimating the Variance

The MSE of the three variance estimators for the
test populations are shown in Fig. 3. For each popu-
lation, method 3 exhibited the smallest MSEs
throughout the entire range of sample sizes. For pop-
ulation A (Fig. 3A) the MSE of each variance esti-
mator was nearly the same for small sample sizes (n
<< 15), however, for larger sample sizes, method 1 had
higher MSEs than methods 1 or 2. As population
skewness increased, method 3 had the lowest MSEs
over the entire range of sample sizes (Fig. 3B, C). With
all populations, for low sample numbers, method 2
exhibited high MSEs and for larger samples the per-
formance of method 2 approached that of method 3.
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Fig. 3. Influence of sample size on mean square error of the three
statistical methods used to estimate the variance of populations
A (Fig. 3A), B (Fig. 3B), and C (Fig. 3C). Exact solutions of the
mean square errors for methods 1 and 2 are presented. Mean
square errors for method 3 were estimated using Monte Carlo
simulation.
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Method 1 performed better than method 2 for n <
20 but the MSEs of method 1 were higher than those
of methods 2 or 3 at larger sample sizes.

The variance estimators of methods 1 and 3 were
unbiased, however, method 2 yielded biased estimates
of the population variance (Table 4). Even for popu-
lations having low skewness (population A), for a sam-
ple size of 4, method 2 yielded estimates which over-
estimated the population variance by 52%. The bias
of this estimator increased with increasing population
skewness, for any given sample size.

Estimating the Coefficient of Variation

Although the CV has no function in statistical test-
ing it is commonly used to indicate general differences
in relative dispersion between variables. Also, the CV
may be a useful index for deciding which statistical
methods to use in estimating the mean and variance.
Because of the widespread use of the CV statistic, an

4 00 L] T L 1 ]
POPULATION A A

300 + METHOD 1 ——— |
METHOD 2 -----

METHOD 3@ :--vvcc:-

S
)
o
o

| 4

1500

T

wl
vy 1000
=

S00 |

H

\ POPULATION C C
1

1

0 20 40 60 80 100
SAMPLE SIZE (n)

Fig. 4. Influence of sample size on mean square error of the three
statistical methods used to estimate the coefficient of variation of
populations A (Fig. 4A), B (Fig. 4B), and C (Fig. 4C). The mean
square errors for each sample size were estimated using Monte
Carlo simulation.

evaluation of different CV estimators was included in
this study.

Method 3 yielded lower MSEs than the other meth-
ods over the entire range of sample sizes for the three
test populations (Fig. 4). The clear superiority of the
method 3 estimator in calculating CV is demonstrated
with the highly skewed population (Fig. 4C).

Method 2 performed poorly at low sample numbers
and had higher MSEs than either method 1 or method
3. With increasing sample numbers, the MSEs of
method 2 decreased to levels below those of method
1 and approached the MSEs exhibited by method 3.

CONCLUSIONS AND RECOMMENDATIONS

Historically, there has been much interest in log-
normal distributions, as many natural variables are
skewed and can be approximated by this class of fre-
quency distributions. Consequently, there have been
several studies of parameter estimation methods for
the lognormal distribution (Aitchison & Brown, 1957,
Koch & Link, 1970; Cohen & Whitten, 1980; Vevjev-
ich & Obeysekera, 1984; Rukhin, 1986).

However, we found the existing literature to be in-
conclusive or not easily utilizable for practical appli-
cations in soil science. This in no way diminishes the
importance of the existing literature because some of
these studies were conducted before inexpensive com-
puting time was available, which precluded the eval-
uation of methods for which theory was insufficient.
In other cases the work done in the statistical sciences
simply did not find its way into soil science. This study
was conducted to fill knowledge gaps in the literature
and to partially bridge the communication gap be-
tween statistics and soil science.

With the above objective in mind, presented in Ta-
ble 5 are summary recommendations of the three

Table 4. Influence of sample size and population skewness on bias
of the method 2 variance estimator.

% bias of the variance population

Sample size () A B C
4 52,11 3110 udt
12 11.88 59.51 652.5
20 6.73 29.74 164.9
40 3.23 13.21 53.6
60 2.13 8.49 31.8
100 1.26 4.95 17.5

t Undefined at given sample number and population variance.

Table 5. Summary recommendations of estimation methods for
three sampling intensity ranges for samples from three log-
normal populations.

Recommended methodt

Lognormal Sample
population size (n) Mean Variance Ccv
A 4-20 1,3 1,3 3
20-40 1,3 3 3,2
40-100 1,3,2 3,2 3,2
B 4-20 31 3 3
20-40 3,1 3 3
40-100 3,1,2 3 3,2
c 4-20 3 3 3
20-40 3 3 3
40-100 3,2 3 3,2

t When more than one method is recommended, the methods are presented
in order of most to least preferable,
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methods evaluated in this study. These recommen-
dations are based, primarily, on the relative magni-
tudes of the MSEs of the estimators for the given pop-
ulations and sample ranges. When no substantial
differences in MSEs were apparent, two secondary cri-
teria (i) bias of the estimator, and (ii) ease of imple-
mentation of the method, were used to rank the meth-
ods. In these cases when more than one method is
recommended the recommendations are made in or-
der of decreasing preference. As indicated in Table 3,
the performance of method 3 was equal to or better
than the other methods in estimating the mean, var-
iance, and CV over all sample size ranges for all three
lognormal populations, however for slightly skewed
populations method 1 performed nearly as well and
is much easier to implement. For highly skewed pop-
ulations method 3 was clearly superior than methods
1 or 2. We evaluated the three methods for an addi-
tional lognormal population having a CV of 500% (data
not shown) and found results similar to those ob-
tained for population C.

It should be cautioned that the results of these anal-
yses are strictly valid only for samples drawn from
true lognormal distributions. In sampling we rarely
have the luxury of knowing the true distribution func-
tion of the underlying population, therefore certain
assumptions are required in order to summarize data.
However, if the data are skewed it is logical to use a
skewed model, such as the lognormal, rather than a
symmetric model. We are currently working to eval-
uate the robustness of these statistical methods to de-
viations from strict lognormal populations.

APPENDIX

Presented below are equations for the variance and bias
of the mean and variance estimators using methods 1, 2,
and 3. These quantities were used to calculate the mean
square error of the estimators as described in Eq. [13].

Definitions

Let X,, ..., X, be normally distributed with mean = u
and variance = o% then if Y, = ¢*; Y|, ..., Y, is lognor-
mally distributed with mean = « and variance of 8% The
expected value and variance of Y [E(Y) and VAR(Y), re-
spectively] are given by Eq. [14] and [15]):

E(Y) = a = exp(u t+ ¢%/2) [14]
VAR(Y) = 82 = o?[exp(e®) — 1].  [15]

Variance and Bias of the Mean

Presented in Eq. [16] through [21] are the variance and
bias of the mean estimators of methods 1, 2, and 3 (m,, m,,
and m, calculated by Eq. [1], [4], and [9], respectively):

VAR(m,) = %2 [exp(c?) — 1] [16]
BIAS(m,) = 0 (17

VAR(m,) = exp[2u + (¢*/n)] {exp(c?/n)

—(n—=1)

[1—2%0n— D' — [l —d/(n— DI-"4
[18]

—a¥(n — 1)]

BIAS(m,) = « [exp[ o

—(u—1)

[1 — o¥(n — 1)} T — 1} [19]

n

VAR(m;) = o (exp(c¥/n) ¥ (i‘f—(—g}l—)) — 1} [20]

BIAS(m3) = 0. [21]

Variance and Bias of the Variance

Presented in Eq. [22] through [27] are the variance and
bias of the variance estimators of methods 1, 2, and 3 (s,
53, and s% calculated by Eq. [2], [5], and [10], respectively):

VAR(s}) = %{exp(&rz) — 4exp(36?)
— exp(26?) + 8exp(c?) — 4}

+ n(nz—a-jli {exp(26?) — 2exp(c?) + 1}  [22]

BIAS(s?) = 0 [23]

—{n—1)

VAR(s3) = exp[4p + (8/n)o’}{[1 — 80%/(n — D] =

—(n—1) —(n—1}

—2[1 =6/ (n— D] 2 +[1—4c¥(n— D]z }

—(n=1)

— exp[4n + (4/n)a?] {1 — 46%/(n — 1)]

=(n=-1)

—[1 —26%(n— DI F [24]
BIAS(s3) = o? {exp[—(n — 2)d*/n] {[1 — 4o%/(n

—(n—1) —{n—1)

- DI’ —[1 —2%n— D] 7 | — exp(e? + 1)
[25

VAR(s3) = no closed form solution [26]
BIAS(s%) = 0. [27]

The equations presented above were solved over a range
of sample sizes of n = 4 to 100 (incremented by 2) for the
three lognormal populations described in Table 2. A closed
form solution of equation 26 does not exist, hence the var-
iance of 53 was calculated using the Monte Carlo simulation
techniques described previously.
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ERRATA

Evaluation of Statistical Estimation Methods for Log-
normally Distributed Variables

T.B. PARKIN, J.J. MEISINGER, S.T. CHESTER, J.L.
STARR, AND J.A. ROBINSON

Soil Sci. Soc. Am. J. 52:323-329. (Mar.-Apr. 1988)

The following corrections should be made:

1. Sentence 7 of the abstract should read

Finney’s method has been rarely applied by soil scientists,
but its superiority over the maximum likelihood method
suggests that the latter should not be generally recom-
mended for estimating the mean, variance, and coefficient
of variation of lognormal data.

2. In the body of Table 1, line 11, column 4 should read

1,2,3 instead of 2.
3. In Eq. [2] the term (x; — m?) should be (x; — m,?.
4. In Eq. [8] the term (In(x;) — &2) should be (In(x) — n)*
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